由设置在生产线上的摄像机连续摄取印制品的视频图像,摄像的速度在30 帧/s 以下且可调。摄像机采集到的图像,首先进行量化,将模拟信号转化成数字信号,从中抽取一张有效代表镜头内容的关键帧,并将其显示在显示器上。对于一帧图像,可采用对静止图像的分析方法来处理,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数以及一些其他相关。 由于各种因素影响,会出现各种各样的噪声,如高斯噪声、椒盐噪声及随机噪声等。噪声给图像处理带来很多困难,它对图像分割,特征提取,图像识别,具有直接的影响,因此实时采集的图像需进行滤波处理。图像滤波要求能去除图像以外的噪声,同时又要保持图像的细节。当噪声为高斯噪声时,最常使用的是线性滤波器,易于分析和实现;但线性滤波器对椒盐噪声的滤波效果很差,传统的中值滤波器能减少图像中的椒盐噪声,但效果不算理想,即充分分散的噪声被去掉,而彼此靠近的噪声会被保留下来,所以当椒盐噪声比较严重时,它的滤波效果明显变坏。本系统改进型中值滤波法。该方法首先求得噪声图像窗口中去除最大和最小灰度值像素后的中值,然后计算该中值与对应的像素灰度值的差,再与阈值相比较以确定是否用求得的值代替该像素的灰度值。 图像分割在该阶段中检测出各色标并与背景分离,物体的边缘是由灰度不连续性所反映的L 边缘种类可分为两种,其一是阶跃性边缘,它两边的像素的灰度值有显著不同;其二是屋顶状边缘,它位于灰度值从增加到减小的变化转折点L对于阶跃性边缘,其二阶方向导数在边缘处呈零交叉,因而可用微分算子来做边缘检测算子。微分算子类边缘检测法类似于高空间域的高通滤波,有增加高频分量的作用,这类算子对噪声相当敏感,对于阶跃性边缘,通常可用的算子有梯度算子Sobel 算子和Kirsh 算子。对于屋顶状边缘可用拉普拉斯变换和 Kirsh 算子。由于色标为长方形,且相邻边缘灰度级相差较大,故采用边缘检测来分割图像。这里采用Sobert 边缘子来进行边缘检测,它是利用局部差分算子来寻找边缘,能较好的将色标分离出来。在实际的检测过程中,采用彩色图像边缘检测方法,选择合适的彩色基(如强度、色度、饱和度等)来进行检测。根据印刷机的类型特点,即印刷机各色的颜色和版图的特点,进行多阈值处理,得到各色的二值图。 将分割后的图像进行测量,通过测量值来识别物体,由于色标为形状规则的矩形,所以可对下述特征进行提取:(1) 由像素计算矩形面积,(2) 矩形度,(3) 色度(H ) 和饱和度(S ),然后根据各色标的间隔的像素点数量得到色标间的间距,与设定值比较,得到两者的差值,共进行m 次测量,取平均差值,给数字交流伺服调节部分提供相应的调节信号。以调节色辊的相对位置,从而消除或减少印刷错位。在特征提取时,对图像进行多光谱图像分析,可以定量地表示色标,如彩色数图像中像素的颜色,采用HIS 格式得到各色标颜色信息的两个参数:色度和饱和度,以此来检测油墨的质量。对各色二值图再进行统计计算或与标准图形进行样板匹配,测量印刷过程中墨屑等参数。 印刷机由开卷机放卷运行依次经过各印刷单元,进行各色的印刷和烘干,由收卷机进行收卷L 每色印刷都会在印料的边沿印上以供套色用的色标,该色标线水平长10 mm ,宽1mm ,每个相邻颜色的标志线在套印精确时应相互平行,垂直(纵向)相距 20 mm ,由设置在生产线上的摄影机连续摄取印制品的视频图像,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数 L 如果相邻两色色标间隔大于或小于20 mm ,则说明套印出现了偏差。将该偏差信号送给伺服变频驱动单元,驱动交流伺服电机,使相应的套色修正辊ML 上下移动来延长或缩短印料自上一单元印刷版辊到该单元印刷版辊的行程来动态修正。 QCROBOT可提供此机器视觉模块及工程解决方案。 |